Intended Use

The Model 805 is an Automatic Sample Dilutor designed for use with the full range of Sherwood Flame Photometers, Models 410 (Single Channel), and Model 420 and 425 (Multi Channel).

This operator’s manual contains complete instructions for setting up and using the Model 805. It should be read in conjunction with the Flame Photometer Operator’s Manual. Service information for use by appropriately qualified personnel is also available.

The Model 805 is intended for use by persons knowledgeable in safe laboratory practices. If the Model 805 is not used in accordance with these instructions for use, the protection provided by the equipment may be impaired.

WARNING The Model 805 is designed to be grounded through the power supply lead (line cord) for safe operation. For the safety of operating personnel and optimum performance make sure that the instrument is only connected to a 3-pin socket (outlet) that has an effective earth connection. If you are in any doubt about the safety of your electrical supply system, consult a competent, qualified electrician.

There are no user replaceable parts within the instrument. Do not remove the rear cover from the Model 805 unless you are following the instructions to change the operating voltage and frequency.

Sherwood Scientific and its authorised Distributors and Agents consider themselves responsible for the effects of safety, reliability and performance of the Model 805 only if:

- Assembly operations, extensions, re-adjustments, modifications or repairs are only carried out by persons authorised by them.
- The electrical installation of the relevant room complies with IEC requirements or the local regulatory code.
- The equipment is used in accordance with the instructions for use.

The information contained in this manual was correct at the time of going to print. However, Sherwood Scientific’s policy is one of continuous product improvement and the right to change specifications, equipment and maintenance procedures at any time, without any notice, is reserved.

This manual is copyrighted, and all rights are reserved. No part of this manual may be reproduced by any means or in any form without prior consent in writing.

Sherwood Scientific Ltd.
1 The Paddocks
Cherry Hinton Road
Cambridge
CB1 8DH
England.

Tel. +44 (0)1223 243444
Fax. +44 (0)1223 243300
email. info@sherwood-scientific.com
http://www.sherwood-scientific.com
Contents

1 Unpacking/Assembly
 - 1.1 Unpacking
 - 1.2 Assembly instructions

2 Introduction
 - 2.1 Introduction
 - 2.2 Reagents
 - Dilutions
 - Storage
 - Purification

3 Installation
 - 3.1 Installation
 - 3.2 Services Required
 - Electrical supply
 - Diluent

4 Performance Characteristics and Specification
 - 4.1 Dilution Ratios
 - 4.2 Stability
 - 4.3 Warm Up
 - 4.4 Environmental Conditions
 - Temperature
 - Humidity
 - Installation Category
 - 4.5 Tube Life
 - 4.6 Roller Replacement (Diluent)
 - 4.7 Nominal Pump Rates
 - 4.8 Minimum Sample Volume
 - 4.9 Power Requirements
 - Voltage
 - Fuses
 - Power
 - 4.10 Diluent Supply
 - 4.11 Size
 - 4.12 Weight

5 Operating Instructions
 - 5.1 Controls and Indicators
 - Diluent Tube Tension Arm
 - Platen Lock
 - Sample Pump Tube Identifiers
 - Sample Lift
 - Tension Arm Release Button
 - Diluent Supply Tubing
 - Power
 - 5.2 Rear Panel Connectors and Components
 - Fuses
 - Power
 - 5.3 Operation
 - Calibration
 - Determinations
 - Shutdown
Contents

<table>
<thead>
<tr>
<th>6</th>
<th>Operational Precautions and Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Operational Precautions</td>
</tr>
<tr>
<td>6.2</td>
<td>Hazards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>General</td>
</tr>
<tr>
<td>7.2</td>
<td>Weekly Maintenance</td>
</tr>
<tr>
<td>7.3</td>
<td>Monthly Maintenance</td>
</tr>
<tr>
<td>7.4</td>
<td>Deproteinising or Disinfecting Procedure</td>
</tr>
<tr>
<td>7.5</td>
<td>Changing Pump Tubes and Rollers</td>
</tr>
<tr>
<td>7.6</td>
<td>Checking Pump Flow Rates</td>
</tr>
<tr>
<td>7.7</td>
<td>Cleaning the Manifold Block</td>
</tr>
<tr>
<td>7.8</td>
<td>Cleaning or Replacing the Diluent Filter</td>
</tr>
<tr>
<td>7.9</td>
<td>Cleaning the Pump Platen and Rollers</td>
</tr>
<tr>
<td>7.10</td>
<td>Voltage/Frequency Selection and Fuse Replacement</td>
</tr>
<tr>
<td>7.11</td>
<td>Lubrication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Troubleshooting Guide</td>
</tr>
<tr>
<td></td>
<td>Chart No. 1</td>
</tr>
<tr>
<td></td>
<td>Chart No. 2</td>
</tr>
<tr>
<td></td>
<td>Chart No. 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Spares and Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Ordering Information</td>
</tr>
<tr>
<td>9.2</td>
<td>Spares and Accessories</td>
</tr>
<tr>
<td>9.3</td>
<td>Solutions</td>
</tr>
</tbody>
</table>

Warranty Statement
Unpacking/Assembly

1.1 Unpacking

Add the M805 Dilutor and Standard Accessories from the carton and check the instrument and all the items in the carton for signs of damage. Check items received against the following list and notify your Sherwood Scientific Distributor if any discrepancies or damaged items are discovered.

IMPORTANT
Quantities shown in the following list are those supplied with a new instrument. Do not re-order from this list; instead refer to Section 9 of this manual.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M805 Dilutor</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>001 06 102</td>
<td>Tube clamp, for diluent supply tube</td>
<td>1</td>
</tr>
<tr>
<td>805 48 001</td>
<td>Fuse 1A, type T, slo-blo, Ø5 x 20mm, pack of 2</td>
<td>1 pack</td>
</tr>
<tr>
<td>471 71 900</td>
<td>Mains supply lead</td>
<td>1</td>
</tr>
<tr>
<td>001 72 001</td>
<td>Silicon rubber tubing, manifold block inlet/outlet</td>
<td>1 metre</td>
</tr>
<tr>
<td>001 72 107</td>
<td>Polythene diluent supply tubing</td>
<td>2 metres</td>
</tr>
<tr>
<td>449 06 001</td>
<td>Diluent filter, complete</td>
<td>1</td>
</tr>
<tr>
<td>449 99 001</td>
<td>Cleaning wire, pack of 3</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 07 001</td>
<td>Manifold block</td>
<td>1</td>
</tr>
<tr>
<td>800 09 002</td>
<td>Diluent pump tube, pack of 3</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 004</td>
<td>Roller, pack of 12</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 005</td>
<td>Na/K sample pump tube, Orange, 1 in 200, pack of 3</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 007</td>
<td>Constrictor, for Na/K sample tubes, pack of 10</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 008</td>
<td>Li sample pump tube, Red, 1 in 50, pack of 3</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 009</td>
<td>Constrictor, for Li sample tube, pack of 10</td>
<td>1 pack</td>
</tr>
<tr>
<td>805 11 001</td>
<td>Weir assembly</td>
<td>1</td>
</tr>
<tr>
<td>805 12 001</td>
<td>Weir support clip, with inlet tubing</td>
<td>1</td>
</tr>
<tr>
<td>805 91 001</td>
<td>M805 Operators manual</td>
<td>1</td>
</tr>
<tr>
<td>001 56 603</td>
<td>Lithium Internal Reference Solution, 3 Molar, 6 x 100mls</td>
<td>1 Pack</td>
</tr>
<tr>
<td>800 09 006</td>
<td>Lithium Internal Standard Tube, Orange, long, pack of 3</td>
<td>1 Pack</td>
</tr>
<tr>
<td>410 92 001</td>
<td>CDROM, Flame Training Guide</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE. The following two items are spares for the manifold block.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 31 060</td>
<td>‘O’ ring, small, orifice seal</td>
<td>1</td>
</tr>
<tr>
<td>001 31 058</td>
<td>‘O’ ring, thumbscrew seal</td>
<td>1</td>
</tr>
</tbody>
</table>
Unpacking/Assembly continued

1.2 Assembly Instructions

The M805 Dilutor is supplied for use on 100V (90V to 110V), 120V (103V to 127V) or 240V (216V to 264V), 50 or 60Hz.

CAUTION Before connecting the M805 to your a.c. supply, check that the voltage and frequency settings (refer to the serial number plate) are correct for the local supply. Refer to Section 7.10 paragraphs 7 to 13 of this manual to change the voltage and frequency.

NB. Items 7 and 8 below apply only when the Model 805 is used with the Model 420 Dual Channel Flame Photometer.

1. Connect a suitable plug to the a.c. supply lead (not required if the line cord is used) and connect to an a.c. supply. Follow the plug manufacturers instructions.
2. Unlock the Platen Lock (item 2, figure 7.4) and raise the pump Platen, as shown in figure 7.1, item 1. Remove the length of tubing from the roller assembly if fitted.
3. Using a clean tissue, fold it into a pad and hold it on the rollers. Do not close the platen as the pad might be forced down between the rollers and the housing.
4. Switch on the Dilutor. Wait one minute and then switch off. Inspect the pad of tissue. Repeat paragraphs 3 and 4 until the used pad is clean.
5. Identify the Na/K Sample Pump Tube, colour coded Orange (80009005), which gives a 1 in 200 dilution ratio. Insert the end that measures 70mm to the identifying clip, into the hole on the Platen Assembly, item 1, figure 7.2.
6. Fit the end of the Orange coded sample tube to the connector on the Manifold Block (80007001), refer to item 2, figure 7.1. Make sure that the Orange coded pump tubes are fitted to the shoulder on the connector.
7. Identify the Lithium Internal standard Tube, colour coded Orange (80009006), which is much longer than the Orange sample tube mentioned in 1.2.5 above. Pass the long end of this tube through the hole at the right-hand end of the instrument and into the bottle containing the Lithium Internal Reference Solution (00156603).
8. Feed the 70mm end of this tube through the hole in the Platen Assembly, item 2, figure 7.2, and fit the end to the connector on the Manifold Block, refer to item 3, figure 7.1.
9. Fit the Manifold Block on to the wire support by first locating it on the front wire and then clipping it on to the back wire.
10. Hold the Rotor, to prevent it turning, and unscrew the Pump Roller Retainer, item 5, figure 7.1.
11. Fit four Pump Rollers (80009004) (item 2, figure 7.3) on to the spindles and replace the Pump Roller Retainer.

NOTE Do not lubricate the Pump Rollers as the lubricant may react with the Diluent Pump Tube (80009002).

12. Fit the 2-metre length of polythene Diluent Supply Tubing (00172107) to the Diluent Pump Tube (80009002) and fit that end to the tension arm, item 1, figure 7.4. Fit the other end of the Diluent Pump Tube to the fixed arm as shown in figure 5.4, item 3.
13. Cut a 100mm length from the 1 metre length of Silicon Rubber Tubing (00172001).
Unpacking/Assembly continued

1.2 Assembly Instructions continued

14. Fit one end of the 100mm length of tubing to the Diluent Pump Tube and the other end to the plastic connector on top of the Manifold Block.
15. Feed the end of the Diluent Supply Tube through the hole in the Dilutor case, in the lower lefthand corner.
16. Feed the Diluent Supply Tube through the Tube Clamp (00106102) (see figure A) so that the clamp is conveniently positioned adjacent to the Dilutor.

17. Remove the cap or plug, if fitted, on the inlet to the Diluent Filter (44906001).
18. Fit the Diluent Filter to the Diluent Supply Tube. Make sure that either the arrow is pointing in the direction of flow or that the outlet is connected to the tube that goes to the Dilutor. Insert the Filter into the diluent container (not supplied).
19. Disconnect the ‘U’ tube from the mixing chamber end cap. Pass the ‘U’ tube through the Weir Support Clip (80512001) and refit the ‘U’ tube.
20. Slide the Weir Support Clip over the ‘U’ tube, so that it is touching the mixing chamber, refer to figure C. Tighten the securing screw on the rear of the Weir Support Clip.
Unpacking/Assembly continued

1.2 Assembly Instructions continued

Figure C Weir Assembly fitted to M410/M420 or M425 Nebuliser

1. Nebuliser tube, 2. Tubing, nebuliser to weir, 3. Stainless steel tube,

21. Connect the nebuliser to the Weir Assembly (80511001) using the small bore tubing supplied with the Weir Support Clip. Make sure that the tubing is not kinked or creased.
22. Using the Silicone Rubber Tubing, fit one end to the lower connector on the Weir Assembly, item 6, figure C.
23. Position the M805 so that the distance between the Manifold Block outlet and the Weir Assembly is at a minimum. Increasing the length of tubing between the Dilutor and the Nebuliser will increase the time between sampling and obtaining a readout on the Flame Photometer.
24. Cut the tubing to the required length and pass it through the Outlet Tube Guide, item 3, figure 7.3 on the front of the Dilutor.
25. Connect the end of the tube to the outlet connector on the bottom of the Manifold Block.
26. Connect the remaining length of Silicone Rubber Tubing to the top connector on the Weir Assembly, item 7, figure C. This is the waste outlet tube. Feed the end of the waste outlet tube into the ‘Constant Head & Drain, refer to figure D.

CAUTION The end of the waste outlet tube must be higher than the top of the waste tube inside the constant head & drain, refer to item 4, figure D. If it is at the same height or lower, siphoning may occur and the dilutor will not operate satisfactorily.
1.2 Assembly Instructions

Figure D Waste Outlet Tube

27. If necessary, reduce the length of the Sample Inlet Tube to accommodate the size of beaker to be used. Bear in mind that the length of Sample Inlet Tube plus the Constrictor is 90mm.

NOTE In the following paragraph, when fitting Constrictors to Sample Tubes, make sure that the correct size of Constrictor is used. The larger diameter Constrictor is used with the Red sample tube only.

28. Fit a Constrictor to the end of the Sample Inlet Tube by inserting the end that is cut at a 45° angle. Insert it approximately 3mm as shown in figure 5.3.
29. Refer to Section 5 of this manual for operating instructions.
2

Introduction

2.1 Introduction

The Model 805 Dilutor is an automatic sample dilutor designed for use with Sherwood Flame Photometers. It is a twin rotor peristaltic pump, the sample side consists of a positive action rotor and the diluent side consists of a peristaltic type rotor. The dilution ratios are 1 in 200 (for Na/K measurements) and 1 in 50 (for Li measurements). Standards and samples are presented to either sample pump tube, depending on the dilution ratio required. Other dilution ratios are available; contact your Sherwood Scientific distributor.

This manual covers the use of the Model 805 with a Model 410 Flame Photometer and should be read in conjunction with the instruction manual supplied with the Flame Photometer.

We also cover the use with the Model 420 Dual Channel Flame Photometer when the Li Internal Standard tube is used in place of the Lithium Sample Tube. This eliminates any dilution drift or error as the concentration of Internal Standard will also be affected by pump changes and the correction will be made by the Model 420.

2.2 Reagents

Sherwood Scientific supply a wide range of reagents, including standards, diluent and maintenance solutions for use with the M805 / Flame Photometer system. Please refer to Section 9.3 for a complete list of the reagents available.

The Lithium Internal Standard (00156603) is supplied specifically to be used with the diluter when used in conjunction with the Model 420 or M425 Flame Photometer.

Dilutions

The diluent supply to the Model 805 must be made up from 1 part of Diluent Concentrate to 999 parts deionised or good quality distilled water.

Great care should be taken so that contamination does not occur when preparing the samples and standards, as the accuracy of the M805/Flame Photometer system is dependent on the accuracy and purity of the standards used for calibration.

Storage

All solutions should be stored away from direct sunlight, in a cool place (below +25°C/+77°F), in an airtight container to prevent evaporation and discolouration. Glass containers should not be used, as they can affect Na concentration levels. Prolonged exposure to the atmosphere must be avoided to prevent evaporation of standard solutions, which could affect concentration.

Purification

No purification is required for Sherwood Scientific standard solutions.
3

Installation

3.1 Installation

Carry out the unpacking and assembly instructions. Check items received against the packing list and notify your Sherwood Scientific distributor if you have any problems.

3.2 Services Required

Electrical Supply
An a.c. supply at 90V to 127V or 216V to 264V, 50Hz or 60Hz

NOTE The Model 805 is supplied set for operation on 240V 50Hz, if your mains supply is different follow the instructions in section 7.10.

Diluent
A supply of diluent will be required, at approximately 2 litres per hour. The diluent is made up of 1 part Diluent concentrate to 999 parts deionised or good quality distilled water. The diluent container should be placed on the bench, alongside the dilutor. Do not site the diluent container on the floor, as this will reduce the flow rate.
4

Performance Characteristics and Specification

4.1 Dilution Ratios

The following sample dilution ratios are available:

<table>
<thead>
<tr>
<th>Pump tube</th>
<th>Nominal 1 in 200</th>
<th>1 in 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td></td>
<td>Red</td>
</tr>
</tbody>
</table>

The maximum and minimum dilution ratios for each tube are:

<table>
<thead>
<tr>
<th></th>
<th>Maximum 1 in 300</th>
<th>1 in 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>1 in 166</td>
<td>1 in 25</td>
</tr>
</tbody>
</table>

4.2 Stability

The stability of the dilution ratio between both the small bore pump tubes and the large bore pump tube will remain within the maximum and minimum ranges quoted in Section 3.1. Dilution ratio drift will be less than 0.5% per 10 minutes.

4.3 Warm Up

To meet the specification for the M805/Flame Photometer system a 15-minute warm up period is required.

4.4 Environmental Conditions

Temperature
Operating +10°C to +35°C; Transportation -40°C to +45°C.

Humidity
Operating 85% at +35°C; Transportation 95% at +45°C, non-condensing.

This specification will be unaffected by an ambient temperature change of 4°C (or less) per hour, within the range +10°C to +35°C, with a maximum of 7°C shift during 8 hours.

Installation Category
Installation category 1.
Performance Characteristics and Specification continued

4.5 Tube Life

At least 150 hours operation.

4.6 Roller Replacement (Diluent)

Change pump rollers at every other tube change, equivalent to 300 hours operation.

4.7 Nominal Pump Rates

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluent</td>
<td>33 ml/minute</td>
</tr>
<tr>
<td>Orange</td>
<td>0.15 ml/minute</td>
</tr>
<tr>
<td>Red</td>
<td>0.6 ml/minute</td>
</tr>
</tbody>
</table>

NOTE Only nominal pump rates can be quoted because of the variations in line voltage and frequency. This will not affect performance provided the dilution ratios are within the limits quoted in Section 4.1.

4.8 Minimum Sample Volume

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na serum/urine</td>
<td>50 µl</td>
</tr>
<tr>
<td>K SERUM</td>
<td>50 µl</td>
</tr>
<tr>
<td>K Urine</td>
<td>50 µl (for Flame Photometer only pre-diluted 1 in 5)</td>
</tr>
<tr>
<td>Li serum</td>
<td>200 µl</td>
</tr>
</tbody>
</table>

4.9 Power Requirements

Voltage

100V (90V to 110V) or 120V (103V to 127V) or 240V (216V to 264V), 50Hz or 60Hz.
Refer to section 7.10 to change the voltage settings.

Fuses

Two 1A, slo-blo fuses are fitted for all voltage ranges.

Power

90VA.

NOTE The voltage and frequency that the Model 805 is set to are shown on the serial plate.
4.10 Diluent Supply

A supply of diluent at 2 litres/hour will be required. The diluent supply must be made up from 1 part Diluent Concentrate to 999 parts deionised or good quality distilled water.

4.11 Size

Width 237 mm
Depth 206 mm
Height 156 mm

Space must also be provided to the right of the flame photometer for the diluent container and dilutor, on the same level. Clear access to the mains supply switch must be provided.

4.12 Weight

3.5 kg.
5

Operating Instructions

5.1 Controls and Indicators

Figure 5.1 Model 805 Dilutor Operating

Diluent Tube Tension Arm

The diluent tube tension arm pulls the diluent tube around the pump rotor (shown in the tensioned position, Figure 5.1). Diluent is pumped by the peristaltic action of the rollers passing in succession over the pump tube.

CAUTION Do not leave the diluent pump tube tensioned when the dilutor is switched off, as the life of the pump tube will be drastically reduced.
Operating Instructions continued

5.1 Controls and Indicators continued

Platen Lock
The platen lock, (shown locked in Figure 5.1) holds the pump platen in contact with the sample pump tubes. This results in positive action pumping of sample solution via the two sample pump tubes. Variation of dilution ratios is achieved by changing the bore size of the pump tubes. Nominal dilution ratios are 1 in 50 using Red pump tubes and 1 in 200 using Orange pump tubes.

CAUTION Do not leave the platen locked down when the dilutor is switched off, as the life of the pump tubes will be drastically reduced.

Sample Pump Tube Identifiers
The colour identifies the dilution ratio of the sample pump tubes. Red is 1 in 50 and Orange is 1 in 200.

Lithium Internal Standard Pump Tube
Carries the Lithium internal Standard Solution form its container through the body of the Model 805 into the manifold via the sample pump in parallel to the sample tube.

Sample Lift
Platform for holding sample cups, which can be raised and lowered.

Tension Arm Release Button
Button that when depressed releases the diluent tube tension arm which releases the tension on the diluent pump tube.

Diluent Supply Tubing
The diluent supply tubing carries diluent from the diluent container to the diluent pump tube.

Power
The *power* on/off button (located on the back of the instrument) switches the a.c. power supply to the dilutor.
5.2 Rear Panel Connectors and Components

Figure 5.2 Weir Fitted to Model 410/Model 420

Fuses 1A slo-blo
Fuse draw in combined mains inlet socket/switch for two 1A slo-blo fuses.

Power
Three pin connector for the a.c. supply lead (line cord).
IEC symbol advising user to refer to accompanying documentation.

Serial Plate ~ symbol denotes equipment suitable for alternating current only.
Operating Instructions continued

5.3 Operation

1. Switch on the Flame Photometer and light the flame, as detailed in the flame photometer instruction manual, Section 5.4, and connect the dilutor to the a.c. supply. (For the Model 420 or 425 in Peak and Reference mode set a delay of 30 seconds).

2. Swing the diluent tube tension arm clockwise until it engages with the catch, Item 1, Figure 5.1, and set the platen lock to the locked position, as shown in Figure 5.1, Item 2.

3. Release the clamp fitted to the diluent supply tubing and switch on the dilutor by pressing the power on/off push-button.

Calibration

4. Check that sufficient diluent is available in the diluent container (and that the Internal Standard Tubing is immersed in the Lithium Standard solution if the M420 is being used).

5. Place a beaker of deionised water on the sample lift (Item 5, Figure 5.1), and raise it so that the correct sample constrictor is immersed.

6. If possible, allow 15 minutes for the Flame Photometer to stabilise.

7. Allow the reading to stabilise then adjust the blank control so that the display reads 0.0. (On the Model 420 or 425 the blank procedure is automatic).

8. Replace the deionised water with a standard solution. Make sure the standard is presented to the correct sample constrictor. Na/K standards should be presented to the front and Li standards to the rear sample constrictor. Use a standard with a concentration level similar to that expected in the samples.

9. Allow the reading to stabilise, then adjust the coarse and fine controls for a convenient reading e.g. if a 140mmol/l Na standard is aspirated, set the display to read 140. (For the Model 420 or 425 follow the method from the Operator Manual).

10. Carefully adjust the fuel control, on the Model 410, for a maximum reading on the display, ensuring that only small adjustments are made, with a pause of several seconds between adjustments. (Flame Optimisation is automatic on the Model 420 or 425 and this procedure is not required).

NOTE If you have any difficulty obtaining a maximum Sodium reading proceed as follows: - Open the inspection flap and adjust the fuel control until the flame just starts to lift off the burner. Then turn the fuel control back, counterclockwise, until the cones of the flame are on the burner. Close the flap and proceed with paragraph 11.

11. Remove the standard solution, then aspirate deionised water. Adjust the blank control for a 0.0 reading.

12. Repeat paragraphs 8, 9 and 11 until the blank reading is 0.0 (within ±0.2) and the calibration reading is within ±1%. If a chart recorder is being used set zero on the blank solution and set span while aspirating the calibration standard.
Determinations

13. Place a beaker containing a sample on the sample lift and raise it so that the correct sample constrictor is immersed in the sample. Na/K samples should be presented to the front and Li samples to the rear sample constrictor. When the display reading stabilises, note the result. Repeat with other samples. (For the Model 420 or 425 press ‘Measure’ when the sample just reaches the inlet to the sample pump).

NOTE On the Model 410, K urine samples must be manually pre-diluted 1 in 5 with diluent before presentation to the dilutor. (This is not necessary on the Model 420 or 425).

14. If a constrictor is blocked by fibrin debris, use a scalpel to cut off the end. Make sure that the tube is cut squarely, not at an angle, see Figure 5.3. If necessary, fit the correct new constrictor to the sample tube, refer to Section 8.2.

![Figure 5.3 Sample Constrictor](image)

15. Recalibrate by presenting the standard solution to the correct sample inlet constrictor and repeating paragraph 9. Experience in use will determine how frequently the calibration needs to be checked.

16. When all sample determinations are completed, shutdown the Model 805, as detailed in paragraphs 17 to 21.
Operating Instructions continued

5.3 Operation continued

Shutdown

CAUTION To remove any protein that has built up, at least once a week place both sample constrictors in Enzymatic Cleaning Solution for 10 minutes, while running the dilutor.

17. Place the sample constrictors in deionised water for two minutes.
18. Remove the sample constrictors from the deionised water.
19. Switch off the dilutor. Close the tube clamp fitted to the diluent supply tubing.
20. Depress the tension arm release button, Item 6, Figure 5.1 and release the platen lock, as shown in Figure 5.4.

CAUTION If the diluent tube tension arm is not released and the pump platen unlocked, the life of the tubes will be drastically reduced.

21. Shutdown the flame photometer as detailed in the relevant instruction manual.

Figure 5.4 Model M805 Dilutor Shutdown

6
Operational Precautions and Hazards

6.1 Operational Precautions

1. Solutions aspirated into the Flame Photometers should contain a non-ionic wetting agent. To achieve this add 1 part Diluent Concentrate to 999 parts deionised or good quality distilled water and store in the diluent container.

2. When used with minimum volume samples, it is imperative that fibrous or solid substances are not present. If samples containing fibrous or solid substances are routinely processed, use a large sample volume and adjust the sample lift height so that the sample constrictor does not reach the bottom of the beaker. This will help to prevent blockages in the constrictor.

3. To prevent the build up of protein it is recommended that Enzymatic Cleaning Solution is used each week. Cloudy or partially opaque samples can be an indication of protein precipitation.

4. Make sure that genuine Sherwood Scientific reagents and supplies are used.

5. Do not leave the diluent pump tube tensioned or the platen locked down unless the Model 805 is on. If the platen is inadvertently left locked down for more than 20 minutes, with the Model 805 switched off, Sherwood Scientific recommends that the pump tubes are replaced to maintain performance.

6. Make sure that the routine maintenance procedures are carried out at the intervals stated in Section 7.

7. Do not leave standard solutions exposed to the atmosphere, as losses due to evaporation will affect the concentration of the solution and the accuracy of results.

6.2 Hazards

1. All electrical equipment is potentially hazardous. Do not remove the cover from the Model 805, unless it is disconnected from the a.c. power supply.

2. When used in a Pathology Laboratory, all samples should be treated with the caution accorded to those known to contain pathogenic organisms. Gloves should be worn, and cleaning of component parts of the Model 805 such as the tubing, beakers, manifold block, weir and drain tubing should all be carried out using Tubing Disinfectant. Refer to procedure detailed in Section 7.4.

3. Do not move the Model 805 while a beaker is in position on the sample lift.
7 Maintenance

7.1 General

This maintenance schedule covers the Model 805 Dilutor only. Flame Photometer manuals should be referred to for their maintenance instructions, which must be carried out in addition to those listed in this section.

The Weekly and Monthly Maintenance sections are summaries of the work and the equipment required. The tasks are detailed in Section 7.4 onwards, together with tasks that are part of the six monthly routine service. These procedures have been included as they might be required when using the Troubleshooting Guide.

Refer to Section 9 for ordering information and Catalogue Numbers of parts used for maintenance. These parts are listed, for each operation, under Equipment Required.

WARNING When used in a Pathology Laboratory, cleaning of component parts of the Model 805 such as tubing, beakers, manifold block, weir and drain tubing should be carried out using Tubing Disinfectant. Refer to procedure detailed in Section 7.4.

NOTE The Daily maintenance is detailed in the Shutdown procedure.

7.2 Weekly

EQUIPMENT REQUIRED: - Enzymatic Cleaner.

1. Deproteinise the system, Section 7.4.

7.3 Monthly

EQUIPMENT REQUIRED: - As for Weekly maintenance, plus dilutor pump tubes (and pump rollers for alternate tube changes); diluent filter and ‘O’ ring seal, if required.

1. Deproteinise the system.
2. Change pump tubes, (and pump rollers for alternate tube changes), Section 7.5.
3. Clean manifold block, Section 7.7.
4. Clean diluent container.
5. Check diluent filter, and ‘O’ ring seal. Clean or replace as necessary, Section 7.8.
6. Clean pump platen and rollers, Section 7.9.
7.4 Deproteinising or Disinfecting Procedure

NOTE To Deproteinise the system use Enzymatic Cleaner; to disinfect the system, use Tubing Disinfectant.

EQUIPMENT REQUIRED: Enzymatic Cleaner or Tubing Disinfectant.

1. Switch on the flame photometer and compressor, and light the flame, as detailed in the flame photometer manuals.
2. Swing the diluent tube tension arm clockwise until it engages with the catch, Item 1, Figure 5.1, and set the platen lock to the locked position, as shown in Figure 5.1, Item 2.
3. Release the tube clamp on the diluent supply tube and remove the tube from the diluent container.
4. Switch on the dilutor, and allow the diluent tube to empty. Switch off the dilutor.
5. Close the clamp on the diluent supply tube and depress the tension arm release button.
6. Fill a beaker with Enzymatic Cleaning Solution or Tubing Disinfectant, and place it on the sample lift.
7. Raise the sample lift so that both sample constrictors are immersed to a depth that will give 10 minutes supply of solution.
8. Switch on the dilutor and allow 10 minutes for the solution to completely Deproteinise or disinfect the system.
9. After 10 minutes lower the sample lift and remove the beaker.
10. Release the tube clamp on the diluent supply tube and replace the tube in the diluent container. Swing the diluent tube tension arm clockwise until it engages with the catch.
11. Flush both sample pump tubes with deionised water for 2 minutes.
Maintenance continued

7.5 Changing Pump Tubes and Rollers

EQUIPMENT REQUIRED: - Tubing Disinfectant; diluent pump tube; sample pump tubes; pump rollers (alternate pump tube changes).

1. Using Tubing Disinfectant, disinfect the system as detailed in Section 7.4.
2. Switch off the dilutor.
3. Close the clamp on the diluent supply tube. Raise the pump platen, as shown in Figure 7.1.
4. Disconnect the tube from the steel connector at the bottom of the manifold block, Item 4, Figure 7.1.
5. Unclip the manifold block from the rear wire and remove it from the front wire. Disconnect the two manifold pump tubes and remove them from the dilutor.
6. Take the Orange coded sample pump tube and insert the end that measures 70 mm to the identifying clip, into the hole on the platen assembly, Item 1, Figure 7.2.
7. Fit the end to the connector on the manifold block, so that the pump tube is across the front of the rollers. Make sure that Orange coded pump tubes are fitted up to the shoulder on the connector.

Figure 7.1 Changing Pump Tubes

7.5 Changing Pump Tubes and Rollers continued

Figure 7.2 Inserting Pump Tubes

1. Orange coded (Na/K) sample pump tube, 2. Red coded (Li) sample pump tube.

8. Feed the 70 mm end of the Red coded sample pump tube through the hole in the platen assembly, Item 2, Figure 7.2, and fit it to the connector on the manifold block, refer to Item 3, Figure 7.1. Make sure that Red coded pump tubes are fitted up to the manifold block i.e. on the shoulder.

9. Cut the ends off the sample pump tubes, if necessary. Fit the appropriate constrictor 3 mm into the end of each sample pump tube by inserting the end that is cut at a 45°C angle.

10. Fit the manifold block on to the wire support by first locating it on the front wire and then clipping it on to the back wire.

11. Unclip the diluent pump tube from the fixed arm and tension arm.

12. Disconnect the two tubes from the ends of the diluent pump tube.

NOTE If the pump rollers are to be replaced (every other tube change) continue with paragraph 13. If not, continue with paragraph 16.

13. Hold the rotor, to prevent it turning, and unscrew the pump roller retainer, Item 5, Figure 7.1.

14. Remove the four pump rollers, Item 2, Figure 7.3.

15. Fit four new pump rollers and refit the pump roller retainer.

NOTE Do not lubricate the pump rollers as they are impregnated with special oil that will not react with the diluent pump tube.

16. Fit the diluent supply tubing to the new diluent pump tube and fit that end to the tension arm. Fit the other end to the fixed arm and connect the tubing to the manifold block.
7.5 Changing Pump Tubes and Rollers continued

![Diagram of pump rollers](image)

Figure 7.3 Fitting Pump Rollers

7.6 Checking Pump Flow Rates

EQUIPMENT REQUIRED: - Measuring cylinders, (2 ml capacity for an Orange coded pump tube and 50 ml capacity for the diluent pump tube); beaker, 10 ml capacity for a Red coded pump tube; beaker, 500 ml; sample beaker.

The following procedure details a method for measuring the flow rates of the three pump tubes. The small bore sample tubes are measured over 10 minutes to give a more accurate result, while the diluent pump tube is measured over one minute.

1. Using Tubing Disinfectant, disinfect the system as detailed in Section 7.4.
2. Switch off the dilutor.
3. Disconnect the dilutor outlet tube (Item 12, Figure 7.4) from the weir assembly and place the end in a 500 ml beaker.
7.6 Checking Pump Flow Rates

4. Place both sample constrictors in a beaker containing deionised water.
5. Fill the 2 ml measuring cylinder to the mark with deionised water. Fill the 10 ml beaker with deionised water and weigh it.
6. Release the clamp fitted to the diluent supply tubing.
7. If necessary, swing the diluent tube tension arm clockwise until it engages with the catch, Item 1, Figure 7.4 and set the platen lock to the locked position, as shown in Figure 7.4, Item 2.
8. Switch on the dilutor.
9. Run the dilutor for one minute so that the pump tubes and manifold block are primed.
10. Switch off the dilutor.
11. Place the Orange tube sample constrictor into the 2 ml measuring cylinder and the Red tube sample constrictor into the 10 ml beaker.
12. Switch on the dilutor and run it for an accurately timed 10 minutes. Make sure that both constrictors remain immersed in water during the 10 minute measurement period.
7.6 Checking Pump Flow Rates continued

13. During the 10 minutes, fill the 50 ml measuring cylinder to the mark with deionised water.

14. Remove the end of the diluent supply tube from the diluent container and place in the 50 ml measuring cylinder. Measure the decrease in volume over a period of one minute. Note the result.

15. At the end of 10 minutes, switch off the dilutor and carefully withdraw the sample constrictors so that any droplets are left in the beakers.

16. Note the amount of water pumped by the Orange pump tube from the measuring cylinder. Reweigh the 10 ml beaker and calculate the flow rate of the Red pump tube.

17. Release the platen lock, Item 2, and depress the tension arm release button, Item 6, Figure 7.4.

18. Divide the diluent tube flow rate by 1/10 of the Orange coded sample tube flow rate (equivalent to the flow rate for one minute), note the result.

19. Divide the diluent tube flow rate by 1/10 of the Red coded sample tube flow rate and note the result.

20. Check that the results are within specification for the appropriate colour coded tube, Orange: - 166 to 300; Red: - 25 to 100.

21. If any result is outside the stated limits, replace all pump tubes as detailed in Section 7.5. If new pump tubes have been fitted check that:-
 - the diluent filter is clean, Section 7.8.
 - the manifold block is not obstructed, Section 7.7.
 - the orifice is not damaged. Check by replacing the orifice.

22. Refit the dilutor outlet tube to the weir assembly.

7.7 Cleaning the Manifold Block

EQUIPMENT REQUIRED: - Dilutor cleaning wire; Enzymatic Cleaner; Tubing Disinfectant; wash bottle; brush.

1. Using Tubing Disinfectant, disinfect the system as detailed in Section 7.4.

2. Switch off the dilutor.

3. Raise the pump platen. Unclip the manifold block from the rear wire and remove it from the font wire, Item 4, Figure 7.1.

4. Disconnect both pump tubes and the inlet and outlet tubes from the manifold block.

CAUTION In the following paragraph; note that the knurled screw retains a spring, which is under compression.

5. Unscrew the knurled screw in the end of the manifold block.
Maintenance continued

7.7 Cleaning the Manifold Block continued

6. Remove the spring, (Item 3, Figure 7.5) and tap out the Orifice (Item 4, Figure 7.5). Be careful that it does not roll away and that the small ‘O’ ring, (Item 5, Figure 7.5) beyond it is not lost, although it will probably remain in the manifold block.

Figure 7.5 Manifold block

7. Check that the orifice is clear of debris. Pass a cleaning wire (Cat. No. 100 99 010) through it and rinse in a jet of water from a wash bottle. Do not use larger wire or the jewel may be chipped.

8. Clean the spring with a brush, if necessary.

9. Pass a dilutor cleaning wire through all channels in the block. To remove stubborn protein deposits soak the block in Enzymatic Cleaning Solution. Then rinse thoroughly in deionised water.

10. Check if ‘O’ rings are worn and replace as necessary.

11. When reassembling, check that the small ‘O’ ring is lying flat in the end of the diluent channel.

12. Insert the orifice into the channel so that the orifice end (the smaller hole) rests on the ‘O’ ring.

13. Insert the spring and hold it in place by tightening the knurled screw in the end of the block. The screw must be fitted with an ‘O’ ring seal, Item 2, Figure 7.5.

14. Replace the tubes on the manifold block and reassemble to the dilutor.

15. Check the pump flow rates as detailed in Section 7.6.
7.8 Cleaning or Replacing the Diluent Filter

Metal Filter Type

EQUIPMENT REQUIRED: - Diluent filter ‘O’ ring seal, if required.

1. Swing the diluent tube tension arm clockwise, Item 1, figure 7.4, until it engages with the catch. Release the tube clamp on the diluent supply tube.

2. Switch on the Dilutor.

3. Remove the tube from the diluent container and allow the dilutor to empty the diluent tube.

4. Switch off the dilutor.

5. Remove the diluent filter from the diluent supply tubing.

6. Use a syringe to force Enzymatic Cleaning Solution through the filter and soak the filter in the solution overnight, if required.

7. Rinse the Enzymatic Cleaning Solution from the filter with deionised water before re-fitting.

8. Place the diluent supply tube in the diluent container and switch on the dilutor.

Plastic Filter Type

EQUIPMENT REQUIRED: - Diluent filter ‘O’ ring seal, if required.

1. Swing the diluent tube tension arm clockwise, Item 1, figure 7.4, until it engages with the catch. Release the tube clamp on the diluent supply tube.

2. Switch on the Dilutor.

3. Remove the tube from the diluent container and allow the dilutor to empty the diluent tube.

4. Switch off the dilutor.

5. Remove the diluent filter from the diluent supply tubing.

6. Unscrew the two parts of the filter. Remove the gauze and the ‘O’ ring seal.

7. Scrub the gauze, to remove any particulate matter.

8. Inspect the ‘O’ ring seal and replace if necessary.

9. Reassemble the diluent filter and refit to the diluent supply tubing. Make sure that either the arrow is pointing in the direction of flow or that the outlet is connected to the tube that goes to the dilutor.

10. Place the diluent supply tube in the diluent container and switch on the dilutor.

11. Check that air is not entering the filter by examining the tube for air bubbles. If necessary, tighten the end of the filter or replace the ‘O’ ring.
Maintenance continued

7.9 Cleaning the Pump Platen and Rollers

EQUIPMENT REQUIRED: - Soft, lint-free cloth; iso-propanol; Tubing Disinfectant; Tissues.

1. Using Tubing Disinfectant, disinfect the system as detailed in Section 7.4.
2. Switch off the dilutor.
3. Raise the pump platen, as shown in Figure 7.1.
4. Disconnect the two sample pump tubes, Items 2 and 3, Figure 7.1, from the manifold block and withdraw them from the pump assembly.

IMPORTANT If oil is present on the rollers, use tissues and carry out paragraph 5. If dirt and plasticiser are present, moisten the cloth with iso-propanol and carry out paragraph 5. Do not use an excessive amount of iso-propanol on the cloth, as it could remove the grease from the roller bearings and cause them to fail.

5. Switch on the dilutor and clean the pump rollers and platen.
6. Switch off the dilutor.
7. Clean the underside of the pump platen using the cloth moistened with iso-propanol.
8. Refit the two pump tubes to the manifold block, as detailed in Section 7.5, paragraphs 6, 7 and 8.
Maintenance continued

7.10 Voltage/Frequency Selection and Fuse Replacement

EQUIPMENT REQUIRED: - Fuses; flat blade screwdriver, Pozidriv screwdriver.

WARNING For continued protection against fire hazard use only the same type and rating of fuse as fitted originally to the Model 805, see instrument rear panel.

1. Switch off the dilutor.
2. Disconnect the a.c. supply lead from the a.c. supply socket.

WARNING Do not continue unless the unit is disconnected from the a.c. supply.

3. To change fuses continue with paragraph 4; to change the operating voltage or frequency continue with paragraph 7.
4. Using the flat blade screwdriver, gently lever open the fuse draw on the mains inlet.
5. Pull the draw out, hinge it down and remove the fuses.
6. Fit a new fuse and replace the draw.

Figure 7.6 Dilutor Rear Panel

1. Fuse holder.
7. To change the operating voltage and frequency:- check the a.c. supply lead is disconnected from the a.c. supply socket.
8. Remove the three rear panel retaining screws and remove the cover.
9. Locate the voltage and frequency selector pcb.
7.10 Voltage/Frequency Selection and Fuse Replacement continued

Figure 7.7 Voltage and Frequency Selector PCB

1. Voltage link, 2. Frequency link.

10. Voltage - reposition the vertical red link to suit the local supply.

NOTE Use the 240V setting if you have a 230V supply.

11. Frequency - reposition the horizontal red link to suit the local supply.

12. Replace the rear panel and refit the retaining screws.

13. Amend the serial label with the appropriate voltage/frequency.
Maintenance continued

7.11 Lubrication

EQUIPMENT REQUIRED: - Allen Key 2.5mmAF, Castor Oil No.1 grade.

Lubrication is required on an annual basis to minimise wear on the teeth of the central gear of the sample pump (right-hand side).

1. Unscrew the two screws retaining the end cap with an allen key and remove the cap (twisting the cap may make it easier).
2. Inspect the central brass gear for signs of wear of the teeth and for adequate lubrication. If necessary apply a couple of drops of No.1 grade Castor Oil to the teeth of the central gear.
3. Place a drop of oil in the brass bush in the centre of the end cap.
4. Re-fit and secure the end cap.
8

Troubleshooting

8.1 Troubleshooting Guide

The Troubleshooting Guide is intended to help customer’s clear specific faults on the Model 805 dilutor as quickly as possible.

The charts are arranged as a series of questions with only two possible answers, Yes or No. If the answer is Yes, you move down the chart to the next question. If the answer is No, you move to the right, across the chart, to the next question. References are given to other sections of this manual for setting up and supplementary information. The charts are not exhaustive, but in the majority of cases will save you time, especially if your experience of the Model 805 Dilutor is limited.

There are three charts; the first deals with general problems, while the other two relate to specific faults.

The following is a list of the charts:-

<table>
<thead>
<tr>
<th>CHART NO.</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General problems.</td>
</tr>
<tr>
<td>2</td>
<td>Pump flow rates incorrect.</td>
</tr>
<tr>
<td>3</td>
<td>Unstable readings.</td>
</tr>
</tbody>
</table>
CHART No.1

<table>
<thead>
<tr>
<th>general problems</th>
<th>IF FAULT PERSISTS, CONTACT YOUR SHERWOOD SCIENTIFIC DISTRIBUTOR</th>
</tr>
</thead>
</table>

NOTE If fault is present when dilutor is not in use, refer to Flame Photometer Instruction Manual.

Are pump flow rates correct? **NO** Refer Chart 2

Are the readings on the flame photometer stable? **NO** Refer Chart 3

YES

Is diluent container contaminated? **NO** Is sample constrictor clear? **NO** Refer Section 5.3 paragraph 14.

YES

Rinse with fresh deionised water before refilling. **YES**

Do samples contain debris? **NO** Are any tubes Pinched or crushed? Photometer with Prediluted samples. **NO**

YES

Check for blockages in manifold block and Pump tubes and refer Section 6.1 paragraph 2. **YES**

Change all suspect tubing.
CHART No.2.

<table>
<thead>
<tr>
<th>Question</th>
<th>Action</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are pump flow rates correct?</td>
<td>NO</td>
<td>Is pump platen locked down? Figure 5.1, Item 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Refer Chart 1.</td>
<td></td>
<td>Are the correct colour coded pump tubes fitted? (Orange 1 in 200 or Red 1 in 50).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is the manifold block free to slide on the wire support?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is the diluent filter blocked or allowing air to leak into the diluent supply?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer Section 7.8.</td>
</tr>
</tbody>
</table>

NOTE If fault is present when dilutor is not in use, refer to Model 410 Instruction Manual.
CHART No.3.

unstable reading

IF FAULT PERSISTS, CONTACT YOUR SHERWOOD SCIENTIFIC DISTRIBUTOR

NOTE If fault is present when dilutor is not in use, refer to Model 410 Instruction Manual.

Are the readings on the flame photometer stable? NO

Is the manifold block free to slide on the wire support? NO

Fit correctly to wire support, Section 7.5, paragraph 10.

YES

Refer Chart 1

Is the diluent filter blocked or allowing air to leak into the diluent supply? NO

Are the pump tubes fitted correctly to the manifold block connectors? NO

Refer to Section 7.5, paragraphs 7 and 8.

YES

Refer Section 7.8.

Are the manifold pump rollers free of oil? NO

Replace both sample pump tubes (Section 7.5) and clean pump rollers (Section 7.9)

YES

Has the routine maintenance been carried out? NO

Carry out monthly maintenance, refer Section 7.3.

YES

Is Diluent Concentrate present in diluent supply? NO

Add 1 part Diluent Concentrate to 999 parts deionised water. Refer Section 6.1, Paragraph 1.

YES

Check flame photometer with prediluted samples.
9

Spares and Accessories

9.1 Ordering Information

When ordering spares or accessories for the Model 805, please give the following information to your Sherwood Scientific distributor:

- Model 805 Serial No.
- Catalogue No. of part required (Cat. No.)
- Description
- Quantity required.

This will help us to deal quickly and efficiently with your order.

The number shown in the third column (Quantity) is the quantity of items that are supplied against the stated catalogue No. If the quantity is greater than 1, then only multiples of that quantity can be supplied.

9.2 Spares and Accessories

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>449 06 001</td>
<td>Diluent filter, complete</td>
<td>1</td>
</tr>
<tr>
<td>001 31 063</td>
<td>‘O’ ring seal, for diluent filter</td>
<td>1</td>
</tr>
<tr>
<td>805 11 001</td>
<td>Weir assembly</td>
<td>1</td>
</tr>
<tr>
<td>805 12 001</td>
<td>Weir support clip</td>
<td>1</td>
</tr>
<tr>
<td>001 72 107</td>
<td>Diluent supply tubing</td>
<td>per metre</td>
</tr>
<tr>
<td>001 72 001</td>
<td>Tubing, for manifold block inlet and outlet</td>
<td>per metre</td>
</tr>
<tr>
<td>100 99 010</td>
<td>Cleaning wire, pack of 3</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 004</td>
<td>Roller, for diluent pump tube rotor, pack of 12</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 002</td>
<td>Diluent pump tube, pack of 3</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 005</td>
<td>Na/K sample tube, Orange, 1 in 200, pack of 3</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 006</td>
<td>Lithium Internal Reference tubing, pack of 3</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 007</td>
<td>Constrictor, for Na/K sample tube, pack of 10</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 008</td>
<td>Li sample tube, Red, 1 in 50, pack of 3</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 09 009</td>
<td>Constrictor, for Li sample tube, pack of 10</td>
<td>1 pack</td>
</tr>
<tr>
<td>800 07 001</td>
<td>Manifold block</td>
<td>1</td>
</tr>
<tr>
<td>001 06 102</td>
<td>Tube clamp, for diluent supply tubing</td>
<td>1</td>
</tr>
<tr>
<td>805 48 000</td>
<td>Fuses, 1A, type T, slo-blo, pack of 2</td>
<td>1 pack</td>
</tr>
<tr>
<td>471 71 900</td>
<td>Mains lead, a.c.</td>
<td>1</td>
</tr>
</tbody>
</table>
9.2 Spares and Accessories

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 26 074</td>
<td>Disposable sample cups, 1ml, pack of 1000</td>
<td>1 pack</td>
</tr>
<tr>
<td>001 26 033</td>
<td>Disposable sample cups, 20ml, pack of 50</td>
<td>1 pack</td>
</tr>
</tbody>
</table>

NOTE The following items are spares for the manifold block.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 03 011</td>
<td>Thumbscrew</td>
<td>1</td>
</tr>
<tr>
<td>001 21 054</td>
<td>Spring</td>
<td>1</td>
</tr>
<tr>
<td>449 04 008</td>
<td>Orifice</td>
<td>1</td>
</tr>
<tr>
<td>001 31 060</td>
<td>‘O’ ring, small, orifice seal</td>
<td>1</td>
</tr>
<tr>
<td>001 31 058</td>
<td>‘O’ ring, thumbscrew seal</td>
<td>1</td>
</tr>
</tbody>
</table>

9.3 Solutions

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 56 100</td>
<td>Standard Solution, 140.0mmol/l Na, 5.00mmol/l, 1.5mmol/l Li, 100ml</td>
<td>1 bottle</td>
</tr>
<tr>
<td>001 56 184</td>
<td>Cleaning Solution, 500 ml</td>
<td>1 bottle</td>
</tr>
<tr>
<td>001 56 182</td>
<td>Enzymatic Cleaner, pack of 6 x 5g sachet</td>
<td>1 pack</td>
</tr>
<tr>
<td>001 56 603</td>
<td>Solution 3 Molar Lithium, pack of 6 x 100 ml</td>
<td>1 pack</td>
</tr>
<tr>
<td>001 56 681</td>
<td>Diluent Concentrate, 6 x 100 ml</td>
<td>1 pack</td>
</tr>
<tr>
<td>001 56 682</td>
<td>Tubing Disinfectant, 6 x 100 ml</td>
<td>1 pack</td>
</tr>
</tbody>
</table>
Sherwood Scientific Limited
Product Warranty Statement

Warranty Term: 12 Months

Sherwood Scientific Ltd (Sherwood) warrants, subject to the conditions itemised within this document, through either Sherwood personnel or personnel of its authorised distributors, to repair or replace free of all charges, including labour, any part of this product which fails within the warranty time specified above, appertaining to this particular product. Such failure must have occurred because of a defect in material or workmanship and not have occurred as a result of operation of the product other than in accordance with procedures described in the instructions furnished with this product.

Conditions and specific exceptions that apply to the above statement are as follows:

1. End-user warranty time commences on the date of the delivery of product to end-user premises.

2. ‘Free of all charges’ statement applies only in areas recognised by Sherwood as being serviced either directly by its own personnel, or indirectly through personnel of an authorised distributor. Products purchased outside these areas requiring service during the warranty period will incur charges relative to the travel/transit costs involved. However, products purchased in such areas will be serviced during the warranty period free of all charges providing they are returned, carriage paid, to either Sherwood or by pre-arrangement to an authorised Sherwood distributor.

3. All maintenance (other than operator maintenance as described in the instructions), repairs or modifications have been made by Sherwood or Sherwood authorised personnel.

4. This product has where applicable been operated using Sherwood specified supplies and reagents.

5. Sherwood reserves the right to make any changes in the design or construction of future products of this type at any time, without incurring any obligation to make any changes whatsoever to this particular product.

6. Reagents, supplies, consumables, accessories and user maintenance items are not included in this warranty.

7. Repairs or replacement of any part failing due to abnormal conditions including the following, are excluded from this warranty:
 a) Flood, lightning, earthquake, tornado, hurricane, or any other natural or man-made disaster.
 b) Fire, bombing, armed conflict, malicious mischief or sprinkler damage.
 c) Physical abuse, misuse, sabotage or electrical surge.
 d) Damage incurred in moving the product to another location.

8. User agrees to permit Sherwood personnel or personnel of its authorised distributor to make changes in the product which do not affect results obtained, but do improve product reliability.
Product Warranty Statement (continued)

Representations and warranties purporting to be on behalf of Sherwood made by any person, including distributors and representatives of Sherwood, which are inconsistent or in conflict with the terms of this warranty (including but not limited to the limitations of the liability of Sherwood as set forth above), shall not be binding upon Sherwood unless reduced to writing and approved by an officer of Sherwood Scientific Ltd.

Except for the obligations specifically set forth in this warranty statement, in no event shall Sherwood be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort or any other legal theory and whether advised of the possibility of such damages.

Neither Sherwood nor any of its third party suppliers makes any other warranty of any kind, whether expressed or implied, with respect to Sherwood Products.

Sherwood Scientific Ltd.,
1 The Paddocks,
Cherry Hinton Road,
Cambridge,
CB1 8DH,
England