SHERWOOD SCIENTIFIC
FLUID BED DRYER
LAB-SCALE, PROGRAMMABLE & ANALYTICAL

FAST MILD NON-AGGLOMERATING
REPRODUCIBLE HOMOGENEOUS

WITH A LARGE RANGE OF TUB ASSEMBLIES, CONSTRUCTION MATERIALS AND SOFTWARE THE MODEL 501 OFFERS A FLEXIBLE PLATFORM ABLE TO ASSIST WITH;

- STUDIES OF MATERIAL DRYING BEHAVIOUR
- THE OPTIMISING AND SCALE-UP OF DRYING PROCESSES
- PREPARATION OF SMALL SAMPLE BATCHES FOR SUBSEQUENT MATERIAL STUDIES
WHAT IS FLUID BED DRYING?
By forcing enough gas (air) through a bed of particles, the bed may assume a fluid like state (resembling a boiling liquid). Heating the incoming air and managing air flow rate through the Model 501 provides thorough mixing and maximum contact of solid with moving air.

The result; a process more even and much quicker than conventional drying methods.

FAST
Delivering up to 2.5m³ per minute of air, the model 501 can break up wet samples, and ensure vigorous mixing and rapid moisture removal.

5Kg of wet, “ideal”, sample (80% moisture) can be dried in 15 to 20 minutes (5 litre tub).

MILD
High air flow rate gives:
• high moisture removal rates at relatively low temperatures
• thorough mixing, so no wet spots requiring extra thermal energy to penetrate
• an air cushion between particles to reduce abrasion and particle size alteration.

NON AGGLOMERATING
Air separated particles prevents lumps and caking, both of which make other drying processes much slower.

HOMOGENEITY OF SAMPLE
Static drying methods leave evaporation residues at the sample surface giving a heterogeneous sample. Fluid Bed Drying achieves the opposite mixing during drying gives homogeneous samples making an ideal method of representative sample preparation for subsequent material analyses.

WHY USE THE SHERWOOD SCIENTIFIC FLUID BED DRYER?

PROGRAMMEABLE
The Model 501 can be programmed (via computer interface) to step through unlimited drying stages with the following parameters defined and controlled: Timer, Motor speed and Inlet air temperature. An optional pulse flow module is available for difficult to fluidise samples. Those parameters are monitored and recorded throughout the drying programme. Each programme step may be terminated manually or when a preset time is reached or when a selected outlet temperature or relative humidity has been achieved; whichever condition occurs first.

ANALYTICAL
Downstream air temperature and relative humidity information may be obtained using a probe within the tub assembly (above the sample bed) and fed to a PC. This allows observation of the drying process in real time. All data is logged via RS232 and may be stored for future reference and processing.

REPRODUCIBLE
Microprocessor control of air flow, inlet air temperature and drying period coupled with fluid bed action gives highly reproducible experiments and finished samples. After preliminary experiments, a known moisture content in the final sample (ideal for tablet forming) or removal of external (surface) moisture only, may be achieved. Drying times to required moisture content may be optimised and drying patterns studied to aid scale up and plant design.

Without a PC connected, the Model 501 can run one stored programme of up to 16 steps (previously downloaded from a PC), or may be used as a conventional (manually controlled) FBD. Additional features of this advanced inlab dryer technology include:

• Precise air flow feed-back control
• Membrane sealed controls to prevent ingress of particles into the instrument.
• Reduced operating noise.

SHERWOOD SCIENTIFIC
FLUID BED DRYER

WHAT IS FLUID BED DRYING?
By forcing enough gas (air) through a bed of particles, the bed may assume a fluid like state (resembling a boiling liquid). Heating the incoming air and managing air flow rate through the Model 501 provides thorough mixing and maximum contact of solid with moving air.

The result; a process more even and much quicker than conventional drying methods.

FAST
Delivering up to 2.5m³ per minute of air, the model 501 can break up wet samples, and ensure vigorous mixing and rapid moisture removal.

5Kg of wet, “ideal”, sample (80% moisture) can be dried in 15 to 20 minutes (5 litre tub).

MILD
High air flow rate gives:
• high moisture removal rates at relatively low temperatures
• thorough mixing, so no wet spots requiring extra thermal energy to penetrate
• an air cushion between particles to reduce abrasion and particle size alteration.

NON AGGLOMERATING
Air separated particles prevents lumps and caking, both of which make other drying processes much slower.

HOMOGENEITY OF SAMPLE
Static drying methods leave evaporation residues at the sample surface giving a heterogeneous sample. Fluid Bed Drying achieves the opposite mixing during drying gives homogeneous samples making an ideal method of representative sample preparation for subsequent material analyses.

WHY USE THE SHERWOOD SCIENTIFIC FLUID BED DRYER?

PROGRAMMEABLE
The Model 501 can be programmed (via computer interface) to step through unlimited drying stages with the following parameters defined and controlled: Timer, Motor speed and Inlet air temperature. An optional pulse flow module is available for difficult to fluidise samples. Those parameters are monitored and recorded throughout the drying programme. Each programme step may be terminated manually or when a preset time is reached or when a selected outlet temperature or relative humidity has been achieved; whichever condition occurs first.

ANALYTICAL
Downstream air temperature and relative humidity information may be obtained using a probe within the tub assembly (above the sample bed) and fed to a PC. This allows observation of the drying process in real time. All data is logged via RS232 and may be stored for future reference and processing.

REPRODUCIBLE
Microprocessor control of air flow, inlet air temperature and drying period coupled with fluid bed action gives highly reproducible experiments and finished samples. After preliminary experiments, a known moisture content in the final sample (ideal for tablet forming) or removal of external (surface) moisture only, may be achieved. Drying times to required moisture content may be optimised and drying patterns studied to aid scale up and plant design.

Without a PC connected, the Model 501 can run one stored programme of up to 16 steps (previously downloaded from a PC), or may be used as a conventional (manually controlled) FBD. Additional features of this advanced inlab dryer technology include:

• Precise air flow feed-back control
• Membrane sealed controls to prevent ingress of particles into the instrument.
• Reduced operating noise.
FLUID BED DRYER

SPECIFYING PROCESS

The Sherwood Scientific Model 501 Fluid Bed Dryer is a Lab Scale (Bench top) dryer with a maximum sample capacity of 5Kg. There is a wide variety of drying tubs (volume and material of construction), inlet & outlet filters, and other accessories available; both to handle as wide a range of sample types as possible and enhance the capability of the drying system. Therefore each system requires specifying in some detail to reflect individual customer requirements and sample characteristics in order to prepare an appropriate quotation.

Outlined below are prompts about the sample type and required process and hence implications for component selection:

<table>
<thead>
<tr>
<th>SAMPLE TYPE</th>
<th>SYSTEM “REQUIREMENTS”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample quantity (weight and/or volume)</td>
<td>A wet sample should occupy about 1/3 of the tub assembly volume. As a sample dries and its density drops, its apparent volume will increase to about ½ the volume. Tubs should be purchased that are 3 x the volume of the sample size. The mini tubs are 250ml in capacity and can be used effectively on samples weighing from 5 to 50 grams per tub. Four tubs can be dried simultaneously.</td>
</tr>
<tr>
<td>Moisture content at start of drying process</td>
<td>The 501 is designed for damp materials not slurries with free water.</td>
</tr>
<tr>
<td>Flammable Solvents present</td>
<td>The 501 is not spark or explosion proof. It is not suitable for the removal of flammable solvents with low flash points.</td>
</tr>
<tr>
<td>Particle size—minimum to maximum (not just average)</td>
<td>You need to know the minimum particle size in the sample in order to choose a suitable mesh/pore size for inlet and outlet filters to prevent sample falling out the bottom of the tub or being blown out the top.</td>
</tr>
<tr>
<td>Tub made from glass or metal</td>
<td>Glass is ideal for developing drying processes; you can observe the material’s behaviour as it dries. The optimum flow rate is easy to select judging by the fluidised samples appearance. The operator may estimate the state of dryness, shape and particle size distribution by the appearance of the sample flowing in the tub. Stainless Steel could be useful in the food industry where regulations may not permit use of glass items within food production or preparation areas.</td>
</tr>
<tr>
<td>Sealed tub or filter bag</td>
<td>Samples with a wide or bi-modal particle distribution are difficult to fluidise without sample overflow into the bag. A sealed top cap is advisable for such samples and any sample with a particle size less than 40 microns. 3 micron polyester filters can be used for mini tubs, 2 and 5 litre tubs. These filters are effective for 5 to 25 micron particles but greatly reduce air flow rate through the sample. Drying times normally occurring between 10 to 30 minutes can take up to several hours. Many of the main advantages of fluid bed drying may be lost.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRYING PROCESS</th>
<th>ACCESSORIES REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple dryer</td>
<td>None</td>
</tr>
<tr>
<td>Multistep drying process</td>
<td>Add software and RS232 cable</td>
</tr>
<tr>
<td>In-time drying progress feedback</td>
<td>Add Moisture/Humidity Probe which means you have to select a tub with a GL32 side port. Only the 5 litre glass tub assemblies, 500 35 010, 501 35 020 and 501 35 000 can have an inlet for the outlet humidity and temperature probe. Only these tubs can fully utilise all the features on the M501.</td>
</tr>
<tr>
<td>Data collection</td>
<td>Add software and RS232 cable</td>
</tr>
<tr>
<td>Data manipulation with drying curve generation.</td>
<td>Add software and RS232 cable</td>
</tr>
<tr>
<td>Add sample to dryer without removing outlet filter</td>
<td>Specify DMA tub (501 35 020)</td>
</tr>
</tbody>
</table>
SHERWOOD SCIENTIFIC
FLUID BED DRYER

DRYER CONFIGURATION: A FEW EXAMPLES AND HOW TO SPECIFY

1] Model 501 shown with 5 litre glass tub 500 35 009 and large filter bag. Remember to specify tub inlet filter and bag material requirements.

2] Model 501 shown with 5 litre glass tub 500 35 010 with GL32 side port, temperature/humidity probe and large filter bag. Please specify tub inlet filter and bag material required and remember to order the temperature humidity probe 501 86 500.

4] Model 501 shown with multi tub unit 500 35 011 and glass minitubs with fixed top caps and bags for drying of small batches of sample. (Image 4 for illustration only - real systems should be all bag or all top-caps)

3] Model 501 shown with 5 litre glass DMA* tub 501 35 020 with sealed top cap assembly and GL32 side port and temperature/humidity probe plus side port for samples. Please specify tub inlet and top cap filter requirements and remember to order the temperature humidity probe 501 86 500. *Dynamic Mositure Analysis

5] Model 501 shown with low density classifier 500 35 049 which allows for fractionation of samples with wide particle size/density distribution and collection of fractions within that range. It also allows separation of desirable sample elements from bulk samples, for example, removal of tree seed “wings” from the seeds.

ACCESSORIES:

ALSO TO BE SPECIFIED INCLUDE,
• Pulse flow module (501 86 001)
• Humidity/Temperature Probe (501 86 500)
• RS232 cable (926 09 052)
• Software (501 86 700)

BAG MATERIAL SELECTION
(NYLON OR TERYLENE ARE NORMALLY CHOSEN)
Nylon is resistant to alkali vapours
Terylene shows greater resistance with acids
Polypropylene is resistant to most chemicals but degrades more rapidly (than the other two) over 100°C
Nomex is an alkali tolerant material suited to sustained high-temperature drying, e.g. ~200°C

Pulse flow module helps to interrupt airflow and help breakup agglomerated “wet” samples e.g. “wet” tea. Can be used manually or controlled via software which offers a greater variety of pulse lengths and the option to reduce or switch off as the material being dried becomes more free flowing.
RS232 Cable for connection between PC and base unit.
Software for control of variable functions, data monitoring and feedback and creation of multistep drying programmes design to dry samples in the most efficient manner and taking into account the changes in the material’s behaviour as its moisture content changes.
Humidity/temperature probe for in-tub, above sample, real-time feedback of temperature and relative humidity.
The basic Model 501 incorporates an air pump, heating coil, and temperature measurement (with control and timer). Air is drawn through an inlet filter, passed over a heating element and forced through a support filter (which holds the weight of the sample) and a Tub inlet filter (selected for pores smaller than the sample particle size). The air passes through the sample contained within a tub (glass or stainless), and finally through an Outlet filter which can be a Filter Bag. Bag material is selected to be chemically inert to emitted sample vapours. Alternately, “sealed” tub assemblies are available, where a filter plate (which has an outlet filter and support filter) seals onto a flanged tub with a silicon “O” ring and clamp (for particles less then 40 microns in size).

<table>
<thead>
<tr>
<th>Bags</th>
<th>Top Temp°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Sample particle size</td>
</tr>
<tr>
<td>Nylon</td>
<td>115</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>Not suitable for less than 35μm</td>
</tr>
<tr>
<td>Terylene</td>
<td>150</td>
</tr>
<tr>
<td>Nomex</td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filters</th>
<th>Sample size</th>
<th>Top Temp°C</th>
<th>Chemical Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon 45μm</td>
<td>≥45μm</td>
<td>115</td>
<td>Good—alkali vapours</td>
</tr>
<tr>
<td>Stainless Steel 60 mesh</td>
<td>≥250μm</td>
<td>1500</td>
<td>All</td>
</tr>
<tr>
<td>Stainless Steel 250 mesh</td>
<td>≥60μm</td>
<td>1500</td>
<td>All</td>
</tr>
<tr>
<td>Stainless Steel 500 mesh</td>
<td>≥30μm</td>
<td>1500</td>
<td>All</td>
</tr>
<tr>
<td>Polyester</td>
<td>≥3μm</td>
<td>230</td>
<td>Good—alkali vapours</td>
</tr>
</tbody>
</table>
APPLICATION OF SHERWOOD FLUID BED DRYERS:
Sherwood Fluid Bed Dryers have been used on hundreds of different sample drying applications, from 10 gms to 5 Kgs. In addition, they have been used to mix solids, form uniform coatings, determine drying parameters, analyse for moisture by weight loss, form fine granular particles from agglomerates, act as a chemical reactor, and classify (separate) particulates by density, size, and surface texture.

If your particular drying application is not listed please contact; info@sherwood-scientific.com

t. +44 (0) 1223 243444
f. +44 (0) 1223 243300
e. enquiries@sherwood-scientific.com
w. www.sherwood-scientific.com

APPLICATION OF SHERWOOD FLUID BED DRYERS:

<table>
<thead>
<tr>
<th>Food Products & Technology</th>
<th>Minerals & Mining</th>
<th>Chemical & Biochemical</th>
<th>Plastics & Resins</th>
<th>Pharmaceuticals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germinated barley</td>
<td>Coal, Coke</td>
<td>Chenodeoxycholic Acid</td>
<td>Diakon acrylic polymer</td>
<td>Lithium carbonate</td>
</tr>
<tr>
<td>Brewer’s yeast</td>
<td>Copper Sulphate</td>
<td>General chemicals</td>
<td>Granular polymer (Nibs)</td>
<td>Cystein chloralose</td>
</tr>
<tr>
<td>Cereals</td>
<td>Feldspar</td>
<td>Drying Agents</td>
<td>Hydrophobic polymers</td>
<td>Salylic Acid</td>
</tr>
<tr>
<td>Grains</td>
<td>Ferrous Sulphate Hydrous</td>
<td>Ion exchange Resins</td>
<td>Hydrophilic polymers</td>
<td>Pancreatic Bile</td>
</tr>
<tr>
<td>Coffee</td>
<td>Limestone</td>
<td>Sephadex Mol. Sieve</td>
<td>Propylene-ethylene</td>
<td>acid and salts</td>
</tr>
<tr>
<td>Animal food</td>
<td>Magnesium Sulphate hydrate</td>
<td>Dyes & Pigments</td>
<td>copolymers</td>
<td>5 sulphosalicylic acid</td>
</tr>
<tr>
<td>Rice</td>
<td>Peat</td>
<td>Phosphors & fine silica</td>
<td>Spherical polymers</td>
<td>Plant extracts</td>
</tr>
<tr>
<td>Tea</td>
<td>Potassium Fluoride</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Alginate</td>
<td>Sand</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If your particular drying application is not listed please contact; info@sherwood-scientific.com

Substances take up water in two ways

External moisture is on the surface of particles and evaporates just like liquid water

Internal moisture is absorbed into the matrix of the particles and takes more time and energy to be released

Drying occurs in two stages: firstly removal of surface water, which occurs at a constant rate and secondly loss of moisture from within a particle which is usually diffusion dependent.

THE DRYING CURVE
Generated by measuring weight loss over time while drying

ACTUAL DRYING CURVES
from a variety of real samples

Sherwood Scientific
FLUID BED DRYER
FBD Brochure.qxp_Layout 1 10/06/2015 10:07 Page 6
Drying curves were traditionally generated by sequential weighing over time periodically interrupting the drying process. Using all the features of the 501 fluid bed dryer i.e. in-tub temperature/humidity probe & software, all data can be logged and stored for future reference and subsequent manipulation.

Raw data can be manipulated using software to produce drying curves.

Inlet air temperature, blower motor speed, in tub temperature and relative humidity can all be recorded against time (using software and the temperature humidity probe).

Raw data logged can be manipulated using Sherwood software so this can be converted...

...to a Drying Curve without having to interrupt the drying process.
INTRODUCTION AND HERITAGE

Sherwood Scientific Ltd., develops and manufactures a range of scientific instruments and apparatus with application in many industries, as well as in education and research. Known for high quality and reliability, Sherwood Scientific products are all manufactured at the company's base in Cambridge, UK and sold and supported through an extensive distributor network covering over 80 countries. Fully equipped training and laboratory facilities enable Sherwood Scientific to offer courses to our distributors on all products and to undertake consultancy projects in analytical measurement and process control. The history of Sherwood Scientific can be traced back more than 70 years to applications of the selenium photocell in early Flame Photometers – now the largest and most diverse of our product lines. The company's heritage also encompasses the Lab Scale Fluid Bed Dryer and Magnetic Susceptibility Balance developed under the auspices of Johnson Matthey, and the acquisition and further development of several Corning and CIBA Corning instruments: Colorimeters and Chloride Analysers.

PRODUCTS

FLAME PHOTOMETERS
Building upon the acclaimed Corning M410, we now manufacture the widest range of Instruments and Accessories: single and multi-channel, with analogue and digital outputs, free-standing and software controlled units and automated analysis packages for Sodium, Potassium, Lithium, Calcium, Barium, Cesium, Rubidium and Strontium analysis

MODEL 501 FLUID BED DRYER
This is a bench top, lab-scale, programmable Fluid Bed Dryer. The microprocessor controlled base unit accommodates the widest range of tub configurations and materials. We select inlet and outlet filters to complement a broad variety of sample types and particle sizes. With in-tub temperature and humidity feedback capability coupled to a software package providing real-time drying condition feedback. This unit allows rapid development of drying protocols and understanding of material drying behaviour.

CHLORIDE ANALYSERS
Our Chloride analysers use coulometric titration technology; offering the best available means of Chloride determination in food, pharmaceutical and industrial products etc. In addition sweat chloride measurement is also possible, (with samples as small as 20ul), as required for assistance with Cystic Fibrosis confirmation.

CHROMA COLORIMETERS
Our CHROMA Colorimeter range offers two fully open, programmable units; which may be utilised with any commercial test kits for water quality monitoring, clinical chemistry measurements and many other colorimetric determinations. We also have a digital equivalent to the renowned Corning 252, for instant, no frills, reliable Absorbance & %Transmission measurements.

MAGNETIC SUSCEPTIBILITY BALANCES
For those studying magnetic properties of materials, our Magnetic Susceptibility Balances offer unsurpassed sensitivity and reliability. We truly are world leaders in this field of analytical chemistry

Sherwood Scientific is represented by a worldwide network of distributors, details of whom can be found on our website. Please contact us for further information or visit us at

www.sherwood-scientific.com

for full product information, application & technical advice and basic theory of principles of operation.

+44 (0) 1223 243444
+44 (0) 1223 243300
enquiries@sherwood-scientific.com
www.sherwood-scientific.com